
RB-P-CAN-485 
Expansion board for Raspberry Pi Pico 



 

 

1. GENERAL INFORMATION 

Dear customer, 
thank you very much for choosing our product. 
In the following, we will introduce you to what to observe while starting 
up and using this product. 
 
Should you encounter any unexpected problems during use, please do 
not hesitate to contact us. 

In this section, we will briefly explain the individual functions of the  
expansion board to which you can connect your Pico.  

USB (USB-C connection):  
5V Power supply. 

Input : 6 - 12V variable power  
supply. 

CAN Term. (CAN Termination) : 
Switches a 120Ω resistor to the "I" 
position, which is used for  
specialized termination of the bus. 

CAN : 
H : Connection to the CAN-High line. 
L : Connection to the CAN-Low line. 
GND : Ground connection for poten-
tial equalization between nodes. 

485 : 
A : Connection to the negative data 
line. 
B : Connection to the positive data 
line. 
GND : Ground connection for  
potential equalization. 

485 Term. (485 Termination) :  
Switches a 120Ω resistor to the "I" 
position, which is used for  
specialized termination of the bus. 

Power LED: Indicates when 5V  
voltage is present either from the 
USB port or from the board's inter-
nal voltage converter 

TXD | RXD (485 status LEDs): 
Displays the current status on the 
Transmit and Receive line. 
A high signal causes the LEDs to 
light up. 



 

 

Now connect a micro USB cable to your computer and to the Raspberry 
Pi Pico for programming. 
 
ATTENTION: The USB-C connection on the board is only used for the 
power supply. No data is transferred to the Raspberry Pi Pico. 
 
You can use a suitable development program of your choice to transfer 
the sample programs. We recommend the Thonny IDE. 
 
ATTENTION: If you are new to the world of microcontrollers and  
electronics, don't worry! We have prepared a special beginner's guide for 
you. This guide is specially tailored to the needs of beginners and  
explains how to use the Raspberry Pi Pico step by step. 
 
From the basic configuration to the execution of projects - in this guide 
we walk you through the whole process. Our guide includes  
easy-to-understand explanations and useful tips to help you develop  
your skills at scale with the Raspberry Pi Pico quickly and effectively. You 
can download our guide here. 

In the following section, we will look at how to connect the Raspberry Pi 
Pico to the expansion board correctly. 
 
Below you can see an illustration of how the Raspberry Pi Pico must be 
plugged into the expansion board. 

Slot for the Raspberry Pi 
Pico: 
The Raspberry Pi Pico is 
plugged in here. 

https://thonny.org/
https://joy-it.net/files/files/Produkte/microcontroller/Raspberry-Pi-Pico_Guide-DE.pdf


 

 

If the Raspberry Pi Pico 
has been plugged in, your 
slot should now look like 
this. 

Now that you have set up your Raspberry Pi Pico, you can upload the 
following two code examples for communication via the RS485 interface 
to your Raspberry Pi Pico. Alternatively, you can also download the code 
examples here. 

Code example of the transmitter: 

from machine import UART, Pin 
import time 
 
uart0 = UART(0, baudrate=115200, tx=Pin(12), rx=Pin(13)) 
c=0 
 
txData = b'RS485 send test...\r\n' 
uart0.write(txData) 
print('RS485 send test...') 
time.sleep(0.1) 
 
while True: 
    c=c+1 
    time.sleep(0.5)  
    print (c)#shell output 
    uart0.write("{}\r\n".format(c)) 

https://joy-it.net/files/files/Produkte/RB-P-CAN-485/RB-P-CAN-485_485.zip


 

 

Code example of the receiver: 

from machine import UART, Pin 
import time 
 
uart0 = UART(0, baudrate=115200, tx=Pin(12), rx=Pin(13)) 
 
flag = 1 
txData = 'RS485 receive test...\r\n' 
uart0.write(txData) 
print('RS485 receive test...') 
time.sleep(0.1) 
 
while True: 
    rxData = bytes() 
    while uart0.any() > 0: 
        rxData = uart0.read() 
        print(rxData) 

Now that you have set up your Raspberry Pi Pico, you can upload the 
following two code examples for communication via the CAN interface to 
your Raspberry Pi Pico. 
 
The corresponding library is required to use these examples. We use the  
MicroPython_CAN_BUS_MCP2515  library from Longan-Labs, which is 
published under the  MIT license. 

Code example of the transmitter from the library: 

''' 
Comments reworked by Joy-IT, 25.03.2024 
--------------------------------------------- 
A simple example to send data to a CAN bus. 
''' 
 
# Import necessary libraries 
import sys  # System-specific parameters and functions 
import time  # Time access and conversions 
 
# Import Can, CanError, CanMsg, and CanMsgFlag classes from the custom 
library 'canbus' 
from canbus import Can, CanError, CanMsg, CanMsgFlag 
 
# Create an instance of the Can class to interface with the CAN bus 
can = Can() 
 
# Initialize the CAN interface 
ret = can.begin()  # Begin method initializes the CAN interface and returns 
a status code 
if ret != CanError.ERROR_OK:  # Check if the initialization was successful 
    print("Error to initialize CAN!")  # Print error message if initializa-

tion failed 

https://github.com/Longan-Labs/MicroPython_CAN_BUS_MCP2515
https://github.com/Longan-Labs
https://github.com/Longan-Labs/MicroPython_CAN_BUS_MCP2515#MIT-1-ov-file


 

 

    sys.exit(1)  # Exit the script with an error code if CAN interface 
couldn't be initialized 
print("Initialized successfully!")  # Print success message if initializati-
on was successful 
 
# Main loop to send data to the CAN bus 
while True: 
    data = b"\x12\x34\x56\x78\x9A\xBC\xDE\xF0"  # Data to be sent over the 
CAN bus in bytes format 
     
    # Create a standard format frame CAN message 
    msg = CanMsg(can_id=0x123, data=data)  # can_id is the identifier for 
the CAN message, data is the bytes to send 
    error = can.send(msg)  # Send the CAN message and store the error status 
    if error == CanError.ERROR_OK:  # Check if the message was sent success-
fully 
        print('1------------------------------')  # Print a delimiter if the 
message was sent successfully 
             
    # Create an extended format frame CAN message 
    msg = CanMsg(can_id=0x12345678, data=data, flags=CanMsgFlag.EFF)  # EFF 
flag indicates an extended frame format 
    error = can.send(msg)  # Send the CAN message and store the error status 
    if error == CanError.ERROR_OK:  # Check if the message was sent success-
fully 
        print('2------------------------------')  # Print a delimiter if the 
message was sent successfully 
 
    time.sleep(1)  # Wait for 1 second before sending the next set of messa-

ges 

Code example of the receiver from the library: 

''' 
Comments reworked by Joy-IT, 25.03.2024 
--------------------------------------------- 
A simple example to receive data from a CAN bus. 
''' 
 
# Import necessary libraries 
import sys  # System-specific parameters and functions 
import time  # Time access and conversions 
 
# Import the Can and CanError classes from the custom library/module 
'canbus' 
from canbus import Can, CanError 
 
# Create a Can object instance for interfacing with the CAN bus 
can = Can() 
 
# Initialize the CAN interface 
ret = can.begin()  # Begin method initializes the CAN interface and returns 
a status code 
if ret != CanError.ERROR_OK:  # Check if the initialization was successful 
    print("Error to initialize CAN!")  # Print error message if initializa-
tion failed 



 

 

    sys.exit(1)  # Exit the script with an error code if CAN interface 
couldn't be initialized 
print("Initialized successfully!")  # Print success message if initializati-
on was successful 
 
# Main loop to receive data from the CAN bus 
while True: 
    if can.checkReceive():  # Check if there is data to receive on the CAN 
bus 
        error, msg = can.recv()  # Receive data from the CAN bus; returns an 
error code and the message object 
        if error == CanError.ERROR_OK:  # Check if data was received without 
errors 
            # Print received message details 
            print('------------------------------') 
            print("can id: %#x" % msg.can_id)  # Print the CAN ID in hexade-
cimal format 
            print("is rtr frame:", msg.is_remote_frame)  # Print whether the 
message is a Remote Transmission Request (RTR) frame 
            print("is eff frame:", msg.is_extended_id)  # Print whether the 
message uses an Extended Frame Format (EFF) 
            print("can data hex:", msg.data.hex())  # Print the message data 
in hexadecimal format 
            print("can data dlc:", msg.dlc)  # Print the Data Length Code 
(DLC), indicating the number of data bytes in the message 
    else: 
        time.sleep(0.1)  # If no data to receive, wait for 0.1 seconds befo-

re checking again 



 

 

7. ADDITIONAL INFORMATION 

Our information and take-back obligations according to 
the Electrical and Electronic Equipment Act (ElektroG)  
 

Symbol on electrical and electronic equipment:  
 

This crossed-out dustbin means that electrical and electronic appliances 
do not belong in the household waste. You must return the old appliances 
to a collection point.  
Before handing over waste batteries and accumulators that are not  
enclosed by waste equipment must be separated from it.  
 
Return options:  
As an end user, you can return your old device (which essentially fulfills 
the same function as the new device purchased from us) free of charge for 
disposal when you purchase a new device.  
Small appliances with no external dimensions greater than 25 cm can be 
disposed of in normal household quantities independently of the  
purchase of a new appliance.  
 
Possibility of return at our company location during opening hours:  
SIMAC Electronics GmbH, Pascalstr. 8, D-47506 Neukirchen-Vluyn,  
Germany  
 
Possibility of return in your area:  
We will send you a parcel stamp with which you can return the device to 
us free of charge. Please contact us by email at Service@joy-it.net or by 
telephone.  
 
Information on packaging:  
If you do not have suitable packaging material or do not wish to use your 
own, please contact us and we will send you suitable packaging. 

8. SUPPORT 

If there are still any issues pending or problems arising after your purcha-
se, we will support you by e-mail, telephone and with our ticket support 
system. 
Email: service@joy-it.net 
Ticket system: http://support.joy-it.net 
Telephone: +49 (0)2845 9360-50  (Mon - Thur: 09:00 - 17:00 o‘clock, 
        Fri: 09:00 - 14:30 o‘clock) 
For further information please visit our website: 
www.joy-it.net 

mailto:service@joy-it.net
https://helpdesk.joy-it.net/
http://www.joy-it.net

