Benewake

TFA170-L User Manual

Preface

This user manual contains the introduction, use and maintenance of TFA170-L LiDAR. Please read this manual carefully before formal use, and strictly follow the steps described in the manual during use to avoid product damage, property loss, personal injury or/and violation of product warranty terms.

If you encounter problems that cannot be solved during use, please contact Benewake staff for assistance.

Contact Details

Official website: <u>en.benewake.com</u>

Contact number: 400-880-9610

For technical questions, please contact: support@benewake.com

For sales inquiries or to request brochure, please contact: <u>bw@benewake.com</u>

Headquarter Address

Benewake (Beijing) Co., Ltd.

3rd Floor, Haiguo Jiaye Sci-Tech Park, Haidian District, Beijing, China

Copyright Notice

This User Manual is copyright © of Benewake. Please do not modify, delete or translate the description of this manual contents without the official written permission from Benewake.

Disclaimer

The TFA170-L product is constantly being improved, and its specifications and parameters will undergo iterative changes. Please refer to the official website for latest version.

Contents

1 Product Overview	1
1.1 Measuring principle	1
1.2 Technical Specifications	1
1.3 Structural Appearance	2
1.4 FoV	3
2 Device Installation	4
2.1 Mechanical installation	4
2.2 Connector	4
3 Communication Protocols	6
3.1 Communication protocol	6
3.2 Data protocol	7
3.3 Custom configuration	8

1 Product Overview

This chapter mainly introduces the measuring principle, technical specifications, structural description, equipment coordinates and field of view distribution of the TFA170-L LiDAR.

1.1 Measuring principle

TFA170-L is a typical Pulse Time of Flight (PToF) sensor. TFA170-L emits a narrow pulse laser, which is collimated by the transmitting lens, which enters the receiving system after being reflected by the measured target and is focused on the APD detector by the receiving lens. The time between the transmitted signal and the received signal is calculated through the circuit amplification and filtering, and the distance between TFA170-L and the measured target can be calculated through the speed of light.

Figure. 1: Pulsed time of flight

1.2 Technical Specifications

Table. 1: Technical specifications

Performance Parameter			
Detection Range [®]	0.1-170m@90% reflectivity 0.1-70m@10% reflectivity		
Accuracy®	±10cm(<10m), 1%(≥10m)		
Distance resolution	1cm		
Default frame rate [®]	50Hz		
Ambient light resistance	100KLux		
Laser Parameters			
Light source	EEL		
Central wavelength	905nm		

FoV	<0.5°			
Eye safety Class 1 Eye-safe [EN60825]				
Mechanical/Electrical				
Average power consumption ≤1W				
Peak current [®]	120mA@12V			
Power supply	DC 12±10%V			
Operating temperature	−20 °C ~ +60 °C			
Storage temperature	−20 °C ~ +80 °C			
Dimensions	TYP. 31.0 x 30.2 x 19.2mm ³			
Weight	~10g			
Connector	1.25mm-4P			
Protection Level	N/A			
Communication Protocol				
Communication Interface	RS-232			

NOTICE

(1) The range is based on 25°C, 85KLux condition, and any changes in environmental conditions may cause changes in the measurement results.

② The accuracy is based on 25℃ indoors and 90% reflectivity

condition, and any changes in environmental conditions may cause changes in the measurement results.

③ The frame rate will be between 1Hz and 1000Hz. 50Hz is the default frame rate. The default frame rate can be customized within the range.

④ The peak current is measured at room temperature.

1.3 Structural Appearance

The overall appearance of the LiDAR is as shown in the figure below:

Figure. 2: TFA170-L Appearance

1.4 FoV

The FoV (field of view) is the angle covered by the LiDAR sensor. The horizontal FoV is 0.4° and the vertical FoV is 0.04°.

NOTICE

0.4° and *0.04°* are theoretic values. Because the manufacturing error and the installing error exist, there is divergence between actual and theoretic values.

2 Device Installation

This section introduces the mechanical installation and connection information of TFA170-L LiDAR.

2.1 Mechanical installation

As shown in the following figure. The model of the installation screw is M2.

Figure. 4: Diagram of TFA170-L installation hole

2.2 Connector

The connector is 1.25mm-4P, appearance and definition are shown as below:

Figure. 5: LiDAR connector appearance

Pin number	Definition	
1	VCC	
2	GND	
3	RS232_TX	
4	RS232_RX	

Table. 2: Interface connector pin definitions

3 Communication Protocols

By definition, RS-232 is a hardware communication protocol that uses asynchronous serial communication with configurable speed. Asynchronous means there is no clock signal to synchronize the output bits from the transmitting device going to the receiving end.

Figure. 6: RS-232 Connection Diagram

3.1 Communication protocol

The device does not contain any power switch. Data can be transmitted after the power adapter is connected and connected to the computer via a network cable.

Table. 3: Characteristics of RS-232 Interface

Character	Value	Configurability
Baud rate	115200	Configurable
Data bit	8	Non-configurable
Stop bit	1	Non-configurable
Parity	None	Non-configurable

NOTE

Baud rate can be set to 9600, 14400, 19200, 38400, 56000, 57600, 115200, 128000, 230400, 256000, 460800, 500000, 512000, 600000, 750000, and 921600. If other value were set, TFA170-L will set it to 115200.

3.2 Data protocol

A standard data frame consists of 30 bytes of hexadecimal numbers. The details are shown as follows:

No. byte	Definition	Remark	Default	
0	Frame Header	Fixed value: 0x59	0x59	
1	Frame Header	Fixed value: 0x59	0x59	
2	Frame Length	Length of this data transfer frame. Number of bytes. Frame header and CRC checksum are included.	Ox1E	
3	Frame ID	0x00: Data transfer frame 0x20: Self-test frame	0x00	
4	RefDist_L	Distance uint16 t	cm	
5	RefDist_H		CIII	
6	ConLvl	Confidence level of reference distance.	%	
7	Status	Status of LiDAR, e.g., Overtemperature warning etc.	/	
8 Temp_L		Temperature	Raw data	
9	Temp_H	remperature		
10	OrgDist1_L	Original Distance #1	Raw data	
11	OrgDist1_H		Kuw uutu	
12-13	PulseWidth1_L	The pulse width of echo pulse of original	/	
12 13	PulseWidth1_H	distance #1	/	
14-15	OrgDist2_L	Original Distance #2	Raw data	
	OrgDist2_H			
16-17	PulseWidth2_L	The pulse width of echo pulse of original	/	
10-17	PulseWidth2_H	distance #2	/	
18-19	OrgDist3_L	Original Distance #3	Raw data	
	OrgDist3_H			
20	PulseWidth3_L	The pulse width of echo pulse of original	/	

Table. 4: Data transfer Protocol

21	PulseWidth3_H	distance #3	
22-23	APDV_L	APD voltage, a basic value used to	/
	APDV_H	evaluate the status of LIDAR	
24	Reserved1	Reserved byte #1	0x00
25	Reserved2	Reserved byte #2	0x00
26	Reserved3	Reserved byte #3	0x00
27	Reserved4	Reserved byte #4	0x00
28	CRC_L	Lower byte of Checksum	/
29	CRC_H	Higher byte of Checksum	/

3.3 Custom configuration

TFA170-L realsed several configuration parameters. These parameters, such as data format, frame rate, could be modified by certain command. All the parameters will be stored in flash after configured successfully and customers don't need to configure again when restart.

Please change the parameter according to certain requirements and do not frequently try irrelevant instructions. Please configure the product according to the requirements of the datasheet and don't send unstated command.

Byte	Definit ion	Description
Byte 0	Head er	Fixed to 0x5A
Byte 1	Len	The length of the entire instruction frame (unit: Byte)
Byte 2	ID	Identifies the function of each instruction
Byte 3~Byte N-2	Paylo ad	Different meanings and lengths in different ID instruction frames
Byte N-1	Check	The lower 8 bits of (Len-1) byte data

Table. 5: Description of TFA170-L Command

Descri ption	Command	Response	Remar ks	Defaul t settin gs
Obtain firmwar e version	5A 04 01 5F	5A 07 01 VA VB VC SU	The version numbe r VC.B.A	/
System reset	5A 04 02 60	5A 05 02 00 61	/	/
Chang e frame rate	5A 06 03 LL HH SU	Same as command	/	50 FPS
Output control	On: 5A 05 07 01 67 Off: 5A 05 07 00 66	Same as command	/	Enabl ed
Modify baud rate	5A 08 06 H1 H2 H3 H4 SU	Same as command	/	115200
Enable checks um	On: 5A 05 08 01 68 Off: 5A 05 08 00 67	Same as command	/	Enabl ed
Restor e default setting s	5A 04 10 6E	5A 05 10 00 6F 5A 05 10 01 70	Succe eded Failed	/
Save setting	5A 04 11 6F	5A 05 11 00 70	Same as	/

Table. 6: General Parameter Configuration and Description

S			above	
Over range thresh old setting	5A 06 4F LL HH SU	5A 05 4F 00 AE	Unit: cm	10000

CAUTION

Do not send the command that is not in the list above.

NOTE

To send certain command to TFA170-L, these steps should be followed:

- Change value of a parameter to HEX
- Put the HEX value in certain command
- Calculate the checksum, put low 8-bits into command

For example, changing the baud rate to 460800, first, changing 460800 to HEX, we can get 0x00 07 08 00, then we can get this command-5A 08 06 00 08 07 00 77.